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Practice Session 8
Neural Language Models: RNN to LSTM

aaaaaaaaaaaaaa



To not get lost in space over time, let’s
Use a mind map



Last time we covered: Tokenization
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Today’s subject: Neural Networks
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Language Models and Commonly used Architectures
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Bigram Language Model
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Neural Language Model
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Recurrent Neural Network (RNN)
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LSTMs and GRUs are for HW6
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Recap of Language Modeling

The intermediate objective is to predict what word comes next.
e.g. “The students opened their ___.”

More formally: given a sequence of words x,,x,,...,x, compute the
probability distribution of the next word x,,, by learning a predictor
parameterized as 6.

Px,, |x,...x,; 0)

Where x,,, can be any word in the vocabulary V



Recap of Neural Language Model (NLM)

output distribution
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NLM pros and cons

® Improvements over n-gram LM:
O No sparsity problem,
O Don’t need to store all observed n-gram,
@® Remaining problems:
O Fixed window is too small,
O Enlarging window enlarges W
O Window can never be large enough
O No symmetry in how the inputs are processed. X s are multiplied
by completely different portion of W.



Recap of Recurrent Neural Network (RNN)
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RNN pros and cons

@® Improvements over NLM:
O Model size doesn’t increase for longer inputs,
O Same weights applied on every timestamp, so there is symmetry
in how inputs are processed.
@® Remaining problems:
O We need to wait for each token to be processed; the process
cannot be sped up.



Text generation with RNN Language Model

favorite season is spring
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Some notations applicable throughout all sessions

® V- \Vocabulary size (the number of unique tokens in the tokenizer’s
vocabulary)

L — Number of layers in a deep model (commonly used in
transformer-based models).

T - Number of tokens in a sequence, alternatively sequence length
E - Embedding dimension

B - Batch size

H - Hidden dimension depending on the context(layer)

A — Number of attention heads in a multi-head attention mechanism.



